
Stroke-by-Stroke Glyph Animation

Yotam Gingold
New York University

719 Broadway, New York, NY, USA
gingold@cs.nyu.edu

David Salesin
Adobe Systems and Univ. of Washington

Seattle, WA, USA
salesin@adobe.com

Denis Zorin
New York University

719 Broadway, New York, NY, USA
dzorin@cs.nyu.edu

Abstract

We present a technique for automatic generation of ani-
mations of font glyphs for video text effects and kinetic ty-
pography. Each glyph is animated as a sequence of strokes,
imitating drawing the glyph with a pen. Starting with an
annotated stroke skeleton for each letter, our algorithm au-
tomatically computes animations for corresponding glyphs
for a broad variety of fonts. Our algorithm imposes few
constraints on font style, and can handle fonts with complex
and unusual outline shape and topology. The technique also
has applications to embroidery and mosaics.

1. Introduction

Text animation is supported by many presentation and
video editing tools. Examples of common effects include
text motion, gradual appearance or dissolve of text, text de-
formation and many others. One particularly natural way
to animate text is to make it appear as if it is written by
hand. This type of font effect is particularly natural for fonts
imitating handwriting, but can be used for practically any
font, as most font glyphs can be reasonably well approxi-
mated by strokes. However, decomposing glyphs of a font
into strokes manually requires considerable effort and skill.
Quite often finding a good decomposition is difficult: while
all fonts consist of glyphs easily recognized as letters of an
alphabet, the variety of geometric shapes these characters
can take may be large, with different topology, placement
of sharp corners and decorative features (see Figure 1).

In this paper, we present an automatic technique for
stroke-based glyph animation. For fonts representing rel-
atively short alphabets (Latin, Greek, Hebrew, Cyrillic, Ar-
menian, Georgian, Korean, to name some examples) one

Avenir
Candida
Highlander

Kabel
Kino

Lucida Blackletter
MyriadPro
Optima

Palatino-Italic
Palatino-Roman
Times-Italic
Papyrus
Bauhaus

Bodoni

Figure 1. Example fonts.

can create a library of skeletal glyph animations and then
transfer these animations to other fonts automatically. Our
goal is to be able to transfer font animation for a maximally
broad variety of fonts styles.

Our algorithm requires little user intervention, other than

specifying several per-font parameters. Any change made
to the original animation sequence is easily propagated to
any other font. In our work we have focused on the standard
Latin alphabet, but the approach is applicable to most alpha-
bets in existence (although its usefulness is limited for Chi-
nese characters, due to a large number of glyphs for which
the strokes have to be specified manually).

Conceptually, our technique can be divided into three
phases: skeleton fitting, glyph segmentation, and animation.
For fine-tuning animations—and to correct the glitches that
sometimes occur—users can modify (or replace) the output
of the skeleton fitting and glyph segmentation phases.

Finally, our algorithm has applications beyond glyph an-
imation: both embroidery and mosaics containing text re-
quire a stroke-based decomposition of glyphs.

Previous work. There has been relatively little work on
automatic glyph animation. In practice, it appears that
glyph animation is usually done by hand, or automatically
in a straightforward way using stroke-based character def-
inition. However, most fonts are stored as outlines, with
no explicit stroke information. Moreover, letters of most
alphabet-based writing systems are not traditionally defined
as a combination of strokes, as it is the case for Chinese
characters.

Extracting skeletal strokes from fonts is more common
([11], [17], [18]), and is typically done with the purpose
of recognizing hand-written or scanned characters, so the
visual quality of strokes is not significant. In the case of
skeletons, we solve a complimentary problem: the letter to
which the glyph corresponds is known, and the goal is to
match a standard skeleton to a particular glyph shape. [8]
extracts important font elements (e.g. serifs) with the goal
of generating a parametric representation of a glyph which
can be used for hinting.

As glyphs can be viewed as images, techniques extract-
ing strokes from painted images or approximating pho-
tographs with strokes can potentially be used [13, 3, 9, 15].
While these techniques can be applied to glyphs, in most
cases they are unlikely to work well, as only relatively small
number of precisely fitted strokes can imitate hand writing
behavior, and such techniques are likely to generate a large
number of fine strokes if precise reproduction of characters
is needed.

Other related work on font stroke generation includes
stylized stroke synthesis [14, 16]; these techniques assume
that stroke skeletons are already defined, and focus on gen-
erating a particular stroke style. The work on computer-
aided font design [5, 7] provides insight into typical tech-
niques used to construct fonts starting from basic skeletons.

Finally, the work on animation transfer in character ani-
mation (e.g. [2, 12, 1]) solves a similar overall problem: a
skeleton and its motion are adjusted to fit a different charac-

ter geometry. However, these papers do not consider stroke
decomposition which, in our case, is the central goal.

2. Overview

To motivate our algorithm, we consider typical variabil-
ities in fonts that we would like to be able to handle.

We refer to the manually animated font as the source font
and the font to which the animation is transferred as the
target font. The target and source font may differ in any of
these categories:

• weight, stretch and slant;

• filled-in or outline, as well as more unusual topology
changes (broken outlines, segmented letters and other);

• serif and sans serif, more generally by decoration type.

• letter variant (e.g. the letter a has two dominant basic
shapes).

This list is by no means exhaustive. While there is little
hope that purely automatic transfer would work well for all
exotic fonts, the goal of the algorithm design is to ensure
that the algorithm makes as few assumptions as possible
about the shape of target characters. In particular, we do not
assume that the outline topology of the source and the target
coincides, or that characters are composed out of strokes.
We only make a weaker assumption that characters can be
closely approximated by a sequence of strokes, possibly of
complex shape.

The source animated glyphs are represented by their
skeleton graphs, with strokes corresponding to paths
through the graph. The four main phases of our algorithm
are (1) skeleton fitting, (2) creation of rough strokes, which
are thick and cover the whole glyph; (3) for each rough
stroke, computation of a mask determining the actual stroke
shape; (4) animation of refined strokes.

The goal of the first phase is to align the skeleton with
the target character. The second phase inflates each skele-
tal stroke so that the glyph is covered and overlap between
strokes is restricted to the skeletal stroke intersection areas;
At the third stage, the mask is obtained by cutting out a part
of the initial glyph inside the rough stroke which has max-
imally “stroke-like” shape. At the final step, rough strokes
are animated using an association of points on the rough
stroke outline with skeletal stroke points, with masks ap-
plied to display only points covered by the original glyph.

In the next sections we describe the sequential stages of
the process in detail.

2

3. Skeleton fitting

The goal of this stage is to find the set of directed curves,
possibly connected at the endpoints, representing the pen
strokes for drawing the glyph. The skeleton graph S con-
sists of curves si possibly sharing endpoints. In our im-
plementation si are either line segments or chains of cu-
bic Bezier segments parameterized on [0, 1] joined with C2

continuity. Any other parametric curve representation can
be used, however cubic Bezier segments have C2 continu-
ity, which appears necessary to approximate the variety of
strokes in e.g. the Latin alphabet.

Each curve in the graph is a part of one or more directed
paths through the graph, which we call skeletal strokes.
Note that skeletal strokes can share parts. (The lower half of
the ‘h’s stem in Figure 6 is shared by a downward skeletal
stroke and an upward one.) The path can be annotated with
the constraint that sequential curves share a tangent.

Figure 2. Skeletons of several letters. Curves
and nodes can be shared by different
strokes.

Given a target glyph to animate, we determine its stroke
graph by fitting a template stroke graph for the letter, which
we assume to be defined by hand. We treat this as an op-
timization problem, minimizing an energy measuring dis-
tances of points inside the target glyph to the skeleton,
while maintaining tangential constraints between curves in
strokes and minimizing skeleton stretching.

As a measure of the quality of fit, we use the average of
a fast-decaying function of distances from the points inside
the glyph to the skeleton S, specifically

Efit =
∫

(x,y)∈glyph

−e−kd(x,y,S)2dxdy

where k is a constant chosen based on weight of the font (an
heuristic procedure for choosing k is described below) and
d(x, y, S) is the distance from the point (x, y) to the skele-
ton S. The intuition behind this choice can be understood
as follows. The expression e−kd(x,y,S)2 decays as a gaus-
sian as the distance from S increases; the contours of this
function (as d increases) are blurrier and blurrier version of

S. That is, the expression e−kd(x,y,S)2 can be interpreted
as a “sweep” of a 1D Gaussian along, and perpendicular to,
the skeleton. Consider a line perpendicular to S at a smooth
point q ∈ S. Then for any point (x, y) of this line closer to
q than any other point of S (i.e. d(x, y, S) = ‖(x, y) − q‖),
in other words, along this line up to the medial axis, we get
the usual one-dimensional Gaussian exp(−k‖(x, y)−q‖2).
Note that this Gaussian sweep is similar to well-known con-
volution surfaces (Figure 3), but does not suffer from the the
undesirable thickening effect near curve joints visible near
the crossing of ‘t’.

Figure 3. Gaussian sweep (left) and Gaussian
convolution (right).

Our energy measures the overlap between the Gaussian
sweep of the skeleton and the glyph by integrating the part
of the sweep in the interior of the glyph. As the magni-
tude of the sweep is the largest near the skeleton, the energy
minimization pushes the skeleton towards the interior.

Rather than using the standard Euclidean distance which
is not differentiable at the points of the medial axis, we use
an approximation: a smoothed distance function, which we
define shortly, following [6]. This is a middle ground be-
tween convolution surfaces and pure Euclidian sweep that
we just described.

The total energy contains two additional terms:

E = Efit + wlength

∑
si∈S,ŝi∈S0

∫ 1

0

√
1 + s′i(t)2√
1 + ŝ′i(t)2

dt

+ wtangent

∑
(si,sj)∈St

arccos

(
s′i(0)
‖s′i(0)‖

·
s′j(1)
‖s′j(1)‖

)2

where si ∈ S are curves of the skeleton parameterized by
t ∈ [0, 1], ŝi ∈ S0 are the initial positions of the curves,
St is the set of pairs of curves with are constrained to
have common tangent and wlength, wtangent are weights.
The second term ensures that the skeleton does not stretch.

3

(Minimization of Efit without constraints would lead to a
space-filling curve covering the glyph.) The last term is a
penalty term with large weight enforcing the tangent con-
straint.

The constant k in Efit is chosen so that e−kd(x,y,S)2 falls
off to approximately .75 when d is half the average thick-
ness of the glyph. (This varies with the weight of the font.)
Too small a k encourages multiple curves of the skeleton to
cover the same glyph strokes, while k too large sensitizes
curves to distant regions of the glyph. When k is properly
chosen, Efit has little to gain as the skeleton double-covers
the parts of the glyph. The constant wlength is set experi-
mentally, to penalize such over-stretching. Note that thicker
fonts have a larger |Efit|, and wlength needs to be increased
accordingly.

If we use minimal distance to S in the expression for
Efit, the energy is not a smooth function of the positions
of the control points of the curves, which makes it impos-
sible to apply gradient or Hessian-based optimization tech-
niques. Instead we approximate the distance d(x, y, S) =
minq∈S ‖(x, y) − q‖ with a smoothed distance

dp(x, y, S) =

(∑
s∈S

∫ 1

0

‖s(t) − (x, y)‖−pdt

)−1/p

(1)

(See [6] for a detailed explanation of this approximation.)
We found p = 5 to be adequate for our application.

To minimize E numerically, we discretize g on a grid
whose long side is 64 and with similar aspect ratio to the
glyph, and discretize the integral in dp by sampling the
curves of S. We compute dp discretely, for each line seg-
ment of every stroke.

The energy we optimize is non-linear and relies on a rea-
sonable initial placement of the stroke. To obtain a good
initial position, we translate and scale the bounding box of
the known glyph matching the stroke graph to match the
bounding box of the target glyph. The same transformation
is applied to the stroke graph to obtain its initial position.

Initial guesses and optimization results can be seen in
Figure 4.

Defining skeleton graphs. While there are no formal re-
strictions on the user-defined skeleton graphs, several rules
need to be observed to obtain good results. First, the num-
ber of degrees of freedom (control points of Bezier seg-
ments and end points of line segments) should be minimal.

Intersections of skeletal strokes must be modeled explic-
itly, i.e. a node must be inserted at the intersection. (Once
skeleton fitting is complete, however, skeletal strokes with
tangent constraints are fused together into a single skeletal
stroke for the remainder of the algorithm.) A number of
letters may have different letterforms (for example, a and g

Figure 4. Initial guesses (top) and optimized
placement (bottom) of skeletons.

and even the italic f, whose stem hangs far below the base-
line).

4. Rough strokes

Rough strokes are an initial approximation to the decom-
position of the character into thick strokes. We want them
to have the following properties:

• Each rough stroke follows a skeletal stroke;

• All points of a glyph are covered by one or more rough
strokes.

• Rough strokes intersect only near intersections of cor-
responding skeletal strokes.

These goals are achieved as follows. We inflate all
strokes until the target glyph is covered by the union of
all inflated strokes. The inflation is achieved by offsetting
points along each stroke using the distance function to the
stroke. The inflation is stopped as soon as the glyph is en-
tirely covered, which is tested by rasterizing the inflated
strokes and the glyph on a 100x100 grid and using pixel-
wise operations for the test (Figure 6).

The simplest way to inflate the strokes is to offset the
stroke along the normal direction. However, such offset-
ting may result in self-intersections whenever a stroke has

4

Figure 5. Offsetting along normals (left) and
integral lines of the smoothed distance gra-
dient field (right).

concave features (Figure 5); avoiding self-intersections re-
quires computing the medial axis and limiting stroke infla-
tion so that the medial axis is never intersected, which is
relatively complicated. Fortunately, the smoothed distance
function (Equation 1) helps to solve this problem in a sim-
ple way. We compute the offset by tracing the integral lines
of the gradient field starting from each stroke. These inte-
gral lines never intersect, unless they reach a point where
the gradient of the distance function is zero, which can be
easily detected. (To avoid the discretization artifact men-
tioned in [6] of integral lines escaping between points of a
discretized stroke, we compute the distance to line segments
of the discretized stroke instead.)

From convex corners we trace three equally spaced
points, from concave corners one, and from the start- and
end-points of the stroke we trace five.

We note that the parts of the offset outline may have ar-
eas of high compression corresponding to the sharp concave
corners on the skeleton. Once the offset outline is com-
puted, we post-process the outline, removing sharp corners.

Note that the (1D) parameterization of a skeletal stroke
naturally extends to the rough stroke inflated from it (Fig-
ure 7). Ignoring the start- and end-caps (created by
tracing outward from the start- and end-points of the
skeletal stroke), each point s(t) on the skeletal stroke
is identified with two points on the boundary of the
rough stroke, the points traced from s(t) in the pos-
itive and negative normal directions which we denote
trace(s(t)+) and trace(s(t)−). The area associated with
s(t) then is the area enclosed by the strips of rough stroke
boundary from trace(s(0)+) to trace(s(t)+) on one side
and trace(s(0)−) to trace(s(t)−) on the other, connect-
ing trace(s(0)+) to trace(s(0)−) and trace(s(t)−) to
trace(s(t)+) with straight line segments.

To complete the parameterization of the rough stroke,
we prepend and append the start- and end-caps, which we

Figure 6. Rough stroke computation: the
skeleton graph (left) and the inflated strokes
(right).

Figure 7. Parameterizing a single stroke.

also parameterize as follows. The start-cap is created by
tracing two additional paths equally spaced between s(0)+

and s(0)− (Figure 7, left); its parameterization begins at
the midpoint between the line segment joining the ends of
the two additional traced paths and expands along the cap
boundary (in both directions) towards trace(s(0)+) and
trace(s(0)−). The end-cap is created similarly, attaching
to trace(s(1)+) and trace(s(1)−), and parameterized sim-
ilarly, except in reverse. This composite parameterization
of (start-cap, skeletal stroke, end-cap) devotes time propor-
tional to the arc length of each, where the arc lengths of
the start- and end-caps are the straight line distances from
s(0) and s(1) to the beginning/end of the start-/end-caps’
individual parameterizations.

5. Stroke masks

Once rough strokes are constructed, one can obtain an
animation of the glyph.

5

Simply draw the inflated strokes in order, parameteriz-
ing each (inflated) rough stroke with the natural parameter-
ization. If the original glyph is used as a mask for draw-
ing strokes, we obtain refined strokes following glyph out-
lines. However, artifacts will appear at junctions wherever
the outline has concave corners (Figure 8), typically, when
two strokes intersect.

Figure 8. Three frames of an animation using
rough stroke masks only. The grey arrow in-
dicates the direction of animation. Artifacts
at concave corners are circled in red.

The goal of this stage of the process is to reduce this type
of artifact. We create an individual mask for each rough
stroke, which we obtain by starting from the original glyph
and then removing pieces. The refined strokes we use for
our final animation are the rough strokes together with their
individual masks.

The central observation is that a typical stroke has only
convex corners (concave smooth features may be present).
Concave corners typically appear where two strokes meet,
although for some types of fonts may appear at any location.
Sharp corners are easy to identify in glyphs: both Type 1
and TrueType fonts store outlines as oriented Bezier curves
or straight line segments. Corners must be endpoints and
are identified as concave by their tangents.

With appropriate cuts, we can eliminate concave corners.
We use a greedy procedure to achieve this. At each concave
corner point, we identify possible cuts between the corner
and other points on the contour (not necessarily corners).
We consider cuts between the corner and the closest neigh-
bor point (if there is one), where a neighbor point is defined
similarly to [10].

Two points are considered stroke neighbors if:

• There is no contour edge intersecting a straight line
between them;

• The vector between the two points is close to one of
the tangent directions at either point (we use π/10 as
the threshold);

Figure 9. Examples of stroke neighbor cuts
(left) and tangent direction cuts (right).

• One can select one of the two tangent vectors at each
point so that the angle between them does not exceed
a threshold (we use π/5).

To identify neighbor points we consider all points in a
dense sampling of the glyph outline.

Note that neighbor points are often also concave corners.
We also consider cuts in two tangent directions at the cor-
ner if they differ sufficiently from the direction towards the
closest neighbor point. An example of cut letters can be
seen in Figure 9.

In a greedy fashion, we make each cut, which necessarily
creates two contours from one 1, and choose the side which
contributes more energy to the stroke. Specifically, we clip
each candidate letter against the rough stroke and then cal-
culate Efit energy between each candidate letter and the
stroke. When calculating Efit here, we use a very small k
(5% of the value used for skeleton optimization). This is to
further desensitize strokes to distant regions of the glyph,
an issue which can occur on fonts with thin serifs (if serifs
are modeled in the skeleton).

Note that there is no explicit guarantee that the union of
all per-stroke masks covers the entire glyph. This can oc-
cur dramatically if different strokes choose the same side at
a cut, although this does not occur with reasonable skele-
tons. However, this often leads to small artifacts where two
strokes meet in a glyph as font designers often place a small
filet that is a concave addition to either stroke.

6. Animation

The rough strokes and individual masks constructed in
the previous steps are all that is needed to generate a glyph
animation with refined strokes. Each rough stroke is as-
sumed to be parameterized on the interval (ti, ti+1), and

1A careful reader may notice that contours must be simple (no holes)
for this to work. We can remove holes with a hairline connection to an
outer boundary, but care must be taken to place this hairline cut outside of
the inflated stroke boundary whenever possible.

6

the strokes are arranged in a sequence. For each frame of
the animation we draw the glyph clipped by the union of
all inflated strokes intersected with their assigned masks.
Finally, to avoid artifacts with filets, the entire unclipped
glyph is drawn after the glyph’s stroke-by-stroke animation
completes.

Results with ti determined by fraction of total arc length
can be seen in Figure 10 and in the accompanying video.

7. Results

We have applied our technique to a variety of fonts of
different styles and weights (Figure 10). In some cases, the
automatic skeleton fitting algorithm produces bad results,
but such skeletons can be easily corrected by hand, as each
skeleton has only a small number of control points. In other
cases, the per-stroke masks choose suboptimal cuts; these
can also be easily corrected by hand, as each mask is created
using a small number of cuts.

Fonts shown in Figure 10 as well as in the ac-
companying video are listed in the following ta-
ble along with their skeleton fitting constants:

Font letters k wlength

Avenir Medium b,j,r,t 10/3002 1.55
Candida Roman q 10/3002 1.55
Highlander Bold l,n,o,v,y 10/8502 6.4
Kabel Black d 10/8502 7.12
Kino c,g,k,u 10/3002 1.55
Lucida Blackletter p,s 10/6002 3.11
MyriadPro Regular m 10/3002 1.55
Optima Regular f,h,i,x 10/3002 1.55
Palatino Italic e,z 10/3002 1.55
Palatino Roman A 10/3002 1.55
Times Italic w 10/3002 1.55

During fitting, TrueType fonts are normalized to the
Type 1 standard (1000 units per “em space” instead of
2048).

The following table presents the success rate of skele-
ton fitting and the overall animation appearance, measured
per letter. (k and wlength are those specified in the table
above.) A skeleton fit or animation is counted as successful
if it lacks visual errors. (The animations shown in Figure 10
and in the accompanying video are all successful.) Note that
an unsatisfactory skeleton fit nearly always leads to anima-
tion artifacts.

Font animation skeleton fitting
Avenir Medium 94% 100%
Candida Roman 92% 100%
Highlander Bold 86% 92%
Kabel Black 72% 81%
Kino 81% 92%
Lucida Blackletter 69% 89%
MyriadPro Regular 94% 100%
Optima Regular 92% 100%
Palatino Italic 92% 94%
Palatino Roman 86% 100%
Times Italic 86% 89%

Limitations. Some decorative fonts have outline behav-
ior which does not match our assumptions about the role of
concave corners. For example, the Bauhaus font outlines
have no concave corners at all. In this case, points at which
to originate cuts can’t be determined by considering corners
and the smooth outline itself must be analyzed with infor-
mation from the stroke skeleton. The Papyrus font has out-
lines with many concave corners which do not correspond
to strokes and whose tangents do not indicate useful cut di-
rections or neighboring points. In this case, constructing
precise strokes requires a much more complex analysis of
glyphs.

8. Future Work

The robustness and speed of skeleton fitting can be im-
proved with a multiresolution optimization process. Such a
process would fit a skeleton with few degrees of freedom,
and then iteratively introduce additional degrees of freedom
and re-fit so long as doing so substantially enhances the fit.

It may be possible to improve the robustness of per-
stroke masks using a snakes-based approach (also called ac-
tive contours [4]). Such an approach would not be sensitive
to outlines with too few concave corners (as in Bauhaus) or
concave corners lacking meaningful tangent directions (Pa-
pyrus).

Modern fonts such as Bodoni are not well-handled by
our system because of the radical thickness changes in
strokes. To handle such fonts, the glyph could be non-
uniformly weighted (perhaps using hinting information) to
compensate for the difference in thickness (and thus area).

Finally, the skeleton fitting phase as well as the per-
stroke mask computation are amenable to user input. An
interface could be provided to allow the user to redraw some
or all of the fitted stroke graph if the fitting phase produces
an unsatisfactory fit. Similarly, if our algorithm is unable to
find good cuts for a glyph’s per-stroke masks, a user could
sketch cuts onto the glyph to obtain better masks.

7

Figure 10. Examples of font animations.

8

References

[1] I. Baran and J. Popović. Automatic rigging and animation of
3D characters. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH), 26(3), August 2007.

[2] M. Gleicher. Retargetting motion to new characters. In Pro-
ceedings of SIGGRAPH 1998, Computer Graphics Proceed-
ings, Annual Conference Series, pages 33–42, July 1998.

[3] A. Hertzmann. Painterly rendering with curved brush
strokes of multiple sizes. In Proceedings of SIGGRAPH
1998, Computer Graphics Proceedings, Annual Conference
Series, pages 453–460, July 1998.

[4] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. International Journal of Computer Vision,
1(4):321–331, 1988.

[5] Z. Pan, X. Ma, M. Zhang, and J. Shi. Chinese font composi-
tion method based on algebraic system of geometric shapes.
Computers & Graphics, 21(3):321–328, May 1997.

[6] J. Peng, D. Kristjansson, and D. Zorin. Interactive modeling
of topologically complex geometric detail. ACM Transac-
tions on Graphics, 23(3):635–643, Aug. 2004.

[7] U. Schneider. A hybrid approach for stroke-based letter-
form composition including outline-based methods. Com-
puter Graphics Forum, 19(4):243–256, Dec. 2000.

[8] A. Shamir and A. Rappoport. Extraction of typographic
elements from outline representations of fonts. Computer
Graphics Forum, 15(3):259–268, Aug. 1996.

[9] S. Simhon and G. Dudek. Pen stroke extraction and refine-
ment using learned models. In Eurographics Workshop on
Sketch-Based Interfaces and Modeling, pages 73–79, Aug.
2004.

[10] X. Song, Y. Luo, A. Niwa, and H. Ueno. Stroke Extraction
as the Preprocessing Step for CJK Outline Font Compres-
sion. In Proceedings of the 8th International Conference on
Neural Information Processing, 2001.

[11] Y. Su and J. Wang. A novel stroke extraction method for
Chinese characters using Gabor filters. Pattern Recognition,
36(3):635–647, 2003.

[12] R. W. Sumner and J. Popović. Deformation transfer for tri-
angle meshes. ACM Transactions on Graphics, 23(3):399–
405, Aug. 2004.

[13] G. Winkenbach and D. H. Salesin. Computer-generated pen-
and-ink illustration. In Proceedings of SIGGRAPH 1994,
Computer Graphics Proceedings, Annual Conference Se-
ries, pages 91–100, July 1994.

[14] H. T. Wong and H. H. Ip. Virtual brush: a model-based
synthesis of chinese calligraphy. Computers & Graphics,
24(1):99–113, Feb. 2000.

[15] S. Xu, Y. Xu, S. B. Kang, D. H. Salesin, Y. Pan, and H.-
Y. Shum. Animating chinese paintings through stroke-based
decomposition. ACM Transactions on Graphics, 25(2):239–
267, Apr. 2006.

[16] J. Yu and Q. Peng. Realistic synthesis of cao shu of chinese
calligraphy. Computers & Graphics, 29(1):145–153, Feb.
2005.

[17] J. Zeng and Z. Liu. Stroke Segmentation of Chinese
Characters Using Markov Random Fields. Proceedings of
the 18th International Conference on Pattern Recognition
(ICPR’06)-Volume 01, pages 868–871, 2006.

[18] A. Zongker. Representation and recognition of handwrit-
ten digits using deformable templates. IEEE Trans. PAMI,
19(12):1386–1391, 1997.

9

